Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives

Publication Type

Journal Article

Date Published

06/2018

Authors

DOI

Abstract

Lithium–sulfur (Li–S) batteries are considered as promising candidates for next-generation energy storage devices due to their ultrahigh theoretical gravimetric energy density, cost-effectiveness, and environmental friendliness. However, the application of Li–S batteries remains challenging, mainly due to a lack of understanding of the complex chemical reactions and associated equilibria occurring in a working Li–S system. In this review, the typical applications of computational chemistry in Li–S battery studies, correlating to characterizationtechniques, such as X-ray diffraction, infra-red & Raman spectraX-ray absorptionspectroscopy, binding energy, and nuclear magnetic resonance, are reviewed. In particular, high-accuracy calculations and large-scale models, materials genome, and machine-learning approaches are expected to further advance computational design for the development of Li–S batteries and related fields.

Journal

Materials Today

Volume

22

Year of Publication

2018

ISSN

13697021

Organization

Research Areas