Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries
Publication Type
Date Published
Authors
DOI
Abstract
Understanding and controlling the surface activities of electrode materials is critical for optimizing the battery performance, especially for nanoparticles with high surface area. Na0.44MnO2 is a promising positive electrode material for large-scale sodium-ion batteries. However, its application in grid-scale energy storage requires improvements in cycling stability at high rate. Here, we performed comprehensive surface-sensitive soft x-ray spectroscopic studies of the Na0.44MnO2 electrode. We are able to quantitatively determine the Mn evolution upon the potentials and cycle numbers. We reveal the Mn2+ formation on the top 10nm of Na0.44MnO2 particles when the electrochemical potential is below 2.6V, which does not occur in the bulk. A portion of the surface Mn2+ compounds become electrochemically inactive after extended cycles, contributing to the capacity fading. Based on the spectroscopic discoveries, we demonstrate that cycling Na0.44MnO2 above 3V could efficiently suppress the Mn2+ formation.